
SUBMITTED TO: I1TH SY1POSIUM ON RELIABLE DISTRIBUTED SYSTEMS

AD-A251 924III IH II HI III Il N iHl Ill III
OPTIMISTIC MESSAGE LOGGING FOR
INDEPENDENT CHECKPOINTING IN

MESSAGE-PASSING SYSTEMS 1

Yi-Min Wang and W. Kent Fuchs

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

1101 W. Springfield Ave.
University of Illinois

Urbana, IL 61801

Primary contact: Yi-Min Wang EL.ECTL '
E-mail: ymwang@crhc.uiuc.edu JUN 2 4 1992

Phone: (217) 244-7161 A

FAX: (217) 244-5686

ABSTRACT

Message-passing systems with communication protocol transparent to the applications re-
quire message logging to ensure the consistency between checkpoints. This paper describes
a periodic independent checkpointing scheme with optimistic logging to reduce the per-
formance degradation during normal execution while keeping the recovery cost acceptable.
Both time and space overhead for message logging can be reduced by detecting messages that
need not be logged. A new checkpoint space reclamation algorithm is presented to reclaim
all checkpoints which are not useful for any possible future recovery. Communication-trace-
driven simulation for several hypercube programs is used to evaluate the techniques.

Key words: independent checkpointing, recovery lines, optimistic message logging, message-

passing systems.
This document hns been approved
for public releasa and sale; its
distiibution is unlimited.

'Acknowledgement: This research was supported in part by the National Aeronautics and Space Admin-
istration (NASA) under Grant NASA NAG 1-613, in cooperation with the Illinois Computer Laboratory for
Aerospace Systems and Software (ICLASS), and in part by the Department of the Navy and managed by
the Office of the Chief of Naval Research under Contract N00014-91-J-1283.

92t 92-16411

1 Introduction

Numerous checkpointing and rollback recovery techniques have been proposed in the

literature for parallel systems. In terms of checkpointing techniques, they can be classified

into two basic categories. Coordinated checkpointing schemes synchronize computation with

checkpointing by coordinating processes during a checkpointing session in order to maintain

a consistent recovery line [1, 2, 3, 4]. Each process only keeps the most recent successful

checkpoint. Rollback propagation is avoided at the cost of potentially significant performance

degradation during normal execution. Independent checkpointing schemes replace the above

synchronization by dependency tracking and possibly message logging [5, 6, 7, 8] in order

to preserve process autonomy. Possible rollback propagation in case of a fault is handled

by searching for a consistent system state based on the dependency information. Lower

run-time overhead during normal execution is achieved by maintaining multiple checkpoints

and allowing slower recovery.

In terms of message logging techniques, there are also two primary categories: pessimistic

and optimistic. Pessimistic logging protocols avoid rollback propagation by logging each

message synchronously [9, 10, 11], i.e., the receiver is blocked until the message is logged on

stable storage. Fast local recovery of a failed process is therefore achieved at the expense of

greater run-time overhead or specialized hardware. Optimistic logging protocols log messages

asynchronously after the receipt [6, 8, 12]. Several messages can be grouped together and

written to the stable storage in a single operation to reduce the logging overhead. Rollback

propagation can occur if some received messages are not yet logged when an error is detected.

This paper considers the independent checkpointing scheme for possibly nondeterministic

execution. We address the problems of application-level checkpointing for systems in which

applications access the message-passing capabilities through system calls. Since the low-level

communication protocol is transparent to the applAications, optimistic message logging pro-

Statement A per telecom - j
Dr. Clifford Lau
ONR/Code 1114 Dist P
Arlington, VA 22217-5000 IMsV 6/23/92 Ai-

tocol is employed to ensure the consistency of checkpoints without incurring large run-time

overhead. Because the recovery line is unknown during normal execution for independent

checkpointing, the problem of recording the state of the channels through message logging is

more involved than the case of coordinated checkpointing. An algorithm is described in this

paper for effectively reducing the number of messages required to be logged. A new check-

point space reclamation algorithm is also presented to further reduce the space overhead for

maintaining multiple checkpoints.

The outline of the paper is as follows. Section 2 describes the system model and the

checkpointing and rollback recovery protocol; Section 3 discusses the consistency between

checkpoints; modification to the protocol for application-level checkpointing is described in

Section 4; Section 5 presents techniques for reducing the number of logged messages and the

checkpoint space overhead; and experimental results are described in Section 6.

2 System Models

The system considered in this paper consists of a number of concurrent processes for

which all process communication is through message passing. Processes are assumed to run

on fail-stop processors [13] and each processor is considered as an individual recovery unit [6].

Since studies [14] have shown that the support for nondeterministc processes is important

for practical applications, we do not assume deterministic execution. Consequently, if the

sender of a message is rolled back, the corresponding message log will be invalid during

reexecution, which means that the receiver also has to be rolled back. We do not address

the problem of concurrent rollbacks due to multiple failures [7].

We consider systems which provide a set of system calls for the applications to access the

message-passing capability, for example, as in the Intel iPSC/2 hypercube. Such systems

2

hide the detailed communication protocol from the user and usually allow easier program-

ming. However, they impose the following constraints for implementing application-level

checkpointing:

1. The state of the communication protocol is invisible to the applications. Information

such as "a certain message has arrived at its destination" or "a message has been lost"

is typically not available to the applications [15].

2. Although messages are normally first-in-first-out through the communication channel,

they are not necessarily received by the application processes in that order. Each

inessage is usually assigned a type and the system calls for receiving messages can

specify the message types [16]. Out-of-order delivery of messages is therefore possible

at the application level.

During normal execution, the state of each processor is occasionally saved as a checkpoint

on stable storage. Let CPik denote the kth checkpoint of processor pi with k > 0 and 0 < i <

N - 1, where N is the number of processors. A checkpoint interval is defined to be the time

between two consecutive checkpoints on the same processor and the interval between CPk

and CPi(k+l) is called the kth checkpoint interval. Each message is tagged with the current

checkpoint interval number and the processor number of the sender. Each processor takes its

checkpoint independently and includes in each checkpoint the communication information, or

input information [7] containing pairs of processor number and checkpoint interval number,

(j, m), if at least one message from the mth checkpoint interval of processor pj has been

received during the previous checkpoint interval.

A centralized checkpoint space reclamation algorithm can be invoked by any processor

occasionally to reduce the space overhead. First, the communication information of all the

existing checkpoints is collected to construct the checkpoint graph. The rollback propagation

3

algorithm [5] (shown in Fig. 1) is executed on the checkpoint graph to determine the global

recovery line. All the checkpoints taken before the global recovery line then become obsolete

and their space can therefore be reclaimed. An example showing the above procedure is

given in Fig. 2(a)-(c) (ignore symbols "V" and dashed boxes for now).

/* CP stands for checkpoint. Initially, all the CPs are unmarked */

include the latest CP of each processor in the root set;
mark all CPs strictly reachable from any CP in the root set;
while (at least one CP in the root set is marked) {

replace each marked CP in the root set by the latest unmarked CP on the
same processor;
mark all CPs strictly reachable from any CP in the root set;

}
the root set is the recovery line.

Figure 1: The Rollback Propagation Algorithm.

When processor pi detects an error, it sends out a rollback-initiating message [7] to

every other processor to request the up-to-date communication information. Each surviving

processor takes a virtual checkpoint upon receiving the rollback-initiating message (Fig. 2 (a)

and (b)). After receiving the responses, pi constructs the extended checkpoint graph [5] and

executes the rollback propagation algorithm to determine the local recovery line (Fig. 2(d)).

A rollback-request message containing the local recovery line is then sent to each processor

and requests the involved processors to rollback and restart.

3 Consistency of Checkpoints

There are two situations concerning the consistency between two checkpoints. In Fig. 3(a),

4

CPoo CPO] CP02 [-J.J 2-
PO 4 - - 4- V P 1 1

L (\1.0)/ L .J L.....

V P2 "t"o F ""Vt,23,

(a) (b)

cP00 cpo1 cp02 c p0 2

c ," o o CCo C P o2 P 1 o 21

Cp1

Pt% FX ! X P12 P2 CP2- , " P2 ! ,,,

(C) (d)

Figure 2: (a) The communication pattern ("+" represents a checkpoint, "V" stands for
virtual checkpoint and "X" indicates a detected error) (b) the communication information
(c) the checkpoint graph for space reclamation (checkpoints marked "X" are obsolete) (d)
the extended checkpoint graph for rollback recovery (CP 2 , CP12 and CP 23 forms the local
recovery line).

if pi and pj restart from the checkpoints CPk and CP, respectively, the message m will be

recorded as "received but not yet sent". Without the assumption of deterministic execution,

message m is not guaranteed to be re-sent during reexecution. CPk and CP,, are thus in-

consistent and cannot exist on the same recovery line. By the construction of the checkpoint

graph, the inconsistency between CPk and CPj, is indicated by the edge connecting them.

In general, two checkpoints will be inconsistent if there exists a directed path between them

on the checkpoint graph.

Fig. 3(b) illustrates the second situation. The message m is recorded as "sent but not yet

5

CPAk CPik
Pi Pi

CPjm CPjm

(a) (b)

Figure 3: (a) message received but not yet sent; (b) message sent but not yet received.

received" according to the system state containing CPk and CP,,,. Bhargava and Lian [7]

defined consistency in such a way that CPA and CP,,, are considered consistent. Koo and

Toueg [3] explained that the situation of restarting from CPik and CPj, is indistinguishable

from the situation that message m is lost during normal execution. Therefore, an end-to-end

transmission protocol which can guarantee the redelivery of lost messages can also guarantee

the resending of* message m during reexecution. Under such an assumption, CPik and CPj,

are consistent.

However, as mentioned in Section 2, such a transmission protocol state is not available

to the applications in the system model considered in this paper. For example, in an iPSC/2

hypercube, a sending process can proceed once it is informed that the communication hard-

ware will take care of the reliable delivery of the message. Therefore, the process is unable to

know when the message arrives at the receiver. Without such information, CPik and CPj,

in Fig. 3(b) can not be considered as consistent unless message m is somehow recorded.

By defining the state of the channels to be the set of messages sent but not yet received,

Chandy and Lamport [2) proved that checkpoints like CPik and CPjm in Fig. 3(b) can become

consistent if the corresponding state of the channels is also recorded. This concept has

typically been applied to coordinated checkpointing techniques with message logging [4, 17].

In these schemes, because only the checkpoints with the same checkpoint number can form

6

a recovery line, messages comprising the state of the channels can be easily identified. For

example, in Fig. 4, message m0 belongs to the channel state corresponding to the recovery

line containing CPij and CPjl and needs to be logged. Message ml, however, does not

belong to the channel state of any recovery line and needs not be logged. The situation

becomes more complicated when we consider the independent checkpointing scheme because

the recovery line is known only at the time of recovery. Message m, can potentially become

part of the channel state if CP1 and CPj2 forms a recovery line. We will first discuss how

to modify the checkpointing and roliback recovery protocol in the next section and then

describe how we can still identify some messages which can not belong to any channel state.

pcio cPii cp

PO CP+C
Pi4 4j -4.

pj 4-

Figure 4: Both messages m0 and mi can become part of the channel state in an independent
checkpointing scheme.

4 Modified Checkpointing and Recovery Protocol

4.1 Valid Checkpoints

First we discuss a possible erroneous situation where the checkpoints are not added to the

checkpoint graph in the correct order because of the unpredictable message transmission

delay during the collection process. Note that when we reclaim the space for "obsolete"

checkpoints, an implicit assumption is that the global recovery line will always move forward

7

in time. This is true only if checkpoints taken earlier are always added to the checkpoint

graph earlier. However, the situation in Fig. 5 might occur. Referring to the same exam-

ple in Fig. 2, checkpoint CP 22 was taken earlier than CP12. Suppose the communication

information (Fig. 2(b) for CP 22 is not collected by the time the communication information

for CP 12 is collected (Fig. 5). If we simply include CP 12 in the checkpoint graph and leave

out all the edges connected to CP22, the rollback propagation algorithm will determine that

{CP 02, CP 12, CP 21} forms the global recovery line and all the earlier checkpoints can be re-

claimed. However, this results in an erroneous situation because CP 12 and CP 21 are in fact

inconsistent. It becomes clear that a checkpoint should only be included in the checkpoint

graph when all of its incoming edges are included.

CP02

P2

Figure 5: Erroneous global recovery line containing inconsistent checkpoints CP12 and CP21

due to the missing checkpoint CP22-.

A similar situation might occur in another scenario when message logging is used to record

the channel state. Suppose one more message m is added to the communication pattern in

Fig. 2(a), as shown in Fig 6. The result of executing the checkpoint space reclamation

algorithm remains the same as in Fig. 2(c). However, if message m is not yet logged when

an error is detected on processor Pl, the rollback of P1 will request the resending of message

m from po, resulting in the rollback of po to CPo1.This is equivalent to adding an edge from

CP12 to CP 2 on the extended checkpoint graph (Fig 6(b)). Because CPo was reclaimed.

8

the recovery will fail. This erroneous situation arises because CP 2 should not have been

included for space reclamation. The fact that message m was not yet logged implied a

potential edge from CP12 to CP 2 which was not included for space reclamation.

rollback edge

CPo0 CPo1 CP02 CP02

P0 4- -4- -4- VP 0
CP1 .Iinn dependency

4- /-amedgePI [X PI -- CPI2 eg

+ 4" V PCP22

(a) (b)

Figure 6: (a) The communication pattern with an extra message m (b) the rollback edge
implied by m causes the recovery to fail.

We will refer to the normal edges representing the communications as dependency edges

as opposed to the rollback edges shown in Fig 6(b). We define a checkpoint to be valid if it

can be included in the checkpoint graph without resulting in the above erroneous situations.

A checkpoint is then valid if the following two conditions hold:

1. the source checkpoints of all incoming dependency edges are valid and

2. all the messages sent before the checkpoint have been logged (or need not be logged as

explained later).

4.2 Modifying the Protocol

Based on the notion of valid checkpoints, the checkpointing and rollback recovery protocol

described in Section 2 can then be modified as follows.

9

1. Each message is assigneu a sequence number which will be included in the communi-

cation information of the receiver. The sequence number is incremented every time a

message is sent.

2. Each processor logs the messages it has received during the previous checkpoint interval

at the time it takes a new checkpoint. Pairs of sequence number and destination

processor number, (q,j), are also recorded for each message (with sequence number q)

it has sent to processor pj during the previous checkpoint interval.

3. Before invoking the rollback propagation algorithm for space reclamation or for recov-

ery, the set of valid checkpoints are first determined by checking the messages sent

against the messages received and logged according to the global communication infor-

mation collected. If any message is sent from the kth checkpoint interval of processor

p, to processor pi and is not yet logged by pi, all checkpoints CP, with rn > k are

invalid and excluded from the checkpoint graph.

5 Reducing the Space Overhead

5.1 Reducing the Number of Message Logs

As mentioned in Section 3, the difficulty of recording the channel state by message logging

with an independent checkpointing scheme lies in the fact that the recovery line is unknown

during normal execution. If all messages have to be logged, both time and space overhead

might be prohibitively large. The following theorem gives a sufficient condition for identifying

messages that will never become part of any channel state, referred to as non-state messages.

and thus need not be logged.

10

THEOREM 1 If there exists a path from CPk to CPm, then all the messages sent from

the (m - 1)th checkpoint interval of processor pj and received by processor pi at the kth

checkpoint interval are non-state messages.

Proof. Suppose the channel state corresponding to a recovery line R contains any of

zuch messages. By definition, R must contain CPj, with x > m and CPiy with y < k.

By the construction of the checkpoint graph, there must exist a path from CPy, y < k, to

CPk because any checkpoint must have dependency on the previous checkpoints of the same

processor. Similarly, there is a path from CPjm to CPj., x > m. If there also exists a path

from CP,k to CP,,, the path from CPj, to CPj, to CPj, to CP x implies CPy and CP,

are inconsistent, contradicting the fact that CPiv and CP, are on the same recovery line R.

Therefore, all the messages satisfying the statement of the theorem are non-state messages.

0

From another point of view, the potential rollback edge resulting from any of the above

non-state messages is from CPik to CPj,. Since the inconsistency between CPik and CPm

is already implied by the dependency path between them, adding the rollback edge will not

affect the recovery line. Theorem 1 is useful in two ways. First, when the checkpoint space

reclamation algorithm is invoked, the space for message logs corresponding to the non-state

messages can be reclaimed. Second, notice that our optimistic logging protocol logs received

messages only at the end of the checkpoint interval. If a processor can detect the path

information as described in Theorem 1 during the current checkpoint interval, it does not

have to log all the received messages. In order to reduce the overhead of dependency tracking

for detecting paths, we implement an algorithm which only "4etects edges, instead of paths.

by monitoring the message exchange during current checkpoint interval. The algorithm will

be described in Section 6 along with other implementation issues.

11

5.2 A Checkpoint Space Reclamation Algorithm

In addition to the message logs, the checkpoints constitute another space overhead. Tradi-

tional checkpoint space reclamation algorithms only reclaim obsolete checkpoints, i.e., check-

points older than the global recovery line. All non-obsolete checkpoints are assumed to be

possibly useful for future recovery and therefore need to be kept on stable storage. When the

domino effect (181 occurs, a large number of these non-obsolete checkpoints results in large

space overhead. We define a discardable checkpoint as a checkpoint that will never belong to

any future recovery line, either global or local. Obsolete checkpoints are clearly discardable.

The following two examples will show that some of the non-obsolete checkpoints are also

discardable.

Fig. 7(a) is a typical example for illustrating domino effect. The global recovery line stays

at the set of starting checkpoints and is unable to move forward. The edge from CPo2 to

CP12 and the one from CP11 to CP02 implies that CP02 is inconsistent with any checkpoint

of processor pi. Since a recovery line must contain one checkpoint from each processor, CP 0 2

will never belong to any recovery line and is therefore discardable. 2 CP11 and CPO, are

discardable by similar arguments.

Fig. 7(b) shows a situation where a processor does not receive any message from any

other processor during a checkpoint interval. CP1 2 has only one incoming edge from CPu1.

All the checkpoints connected to CP12 through a path must also connected to CP 1.In other

words, all the checkpoints which are able to form a recovery line with CP11 must also be

able to form a "better" recovery line with CP12. Therefore, CP 11 can be discarded.

By using the model of maximum-sized antichains on a partially ordered set [20, 21, 22]

2The situation becomes more complicated when some checkpoints can be removed from the checkpoint
graph due to rollback recovery. We have been able to show [19 that all the results in this section are also
valid for such a situation.

12

pp 0
P0 X cp11 0 C1

p1 x "

2CPl1 "P22 Wo--

(a) (b)

Figure 7: (a) CPol, CP11 and CP0 2 are discardable (b) CPu is discardable because CP1 2

has only one incoming edge.

to predict the possible future recovery lines, the following necessary and sufficient condition

for a checkpoint to be non-discardable has been proved. Interested readers are referred to

[191 for detailed derivations.

THEOREM 2 Let N be the number of processors and G be the supergraph of a checkpoint

graph G by adding one checkpoint ni to each processor p; in the way shown in Fig. 8(b). A

checkpoint in G is non-discardable if and only if it belonigs to the union of the recovery lines

of G - ni, 0 < i < N-1.

Theorem 2 also gives the algorithm for finding the set of non-discardable checkpoints:

execute the rollback propagation algorithm on each G - ni and then take the union of the

recovery lines. The complexity of the rollback propagation algorithm as described in Fig. 1

is linear in the number of edges IEI because each edge can be removed once it is visited. Our

Predictive Checkpoint Space Reclamation (PCSR) algorithm is then of complexity O (NIEI).

Since every non-discardable checkpoint determined by the PCSR algorithm belongs to the

recovery line of G - ni for some i, which is a possible future graph of G, the number of

checkpoints reclaimed by our algorithm is maximum. An example for runing the PCSR

13

algorithm is shown in Fig. 8(c)-(f).

Another contribution of Theorem 2 is that it implies the number of non-discardable

checkpoints is bounded by N 2 because each of the N recovery lines consists of N checkpoints.

By further exploiting the relationship among these N recovery lines, an upper bound, N(N +

1)/2, has been derived [19]. The space overhead for maintaining multiple checkpoints is

therefore bounded even when the domino effect persists during program execution.

6 Experimental Results

Four numerical and CAD programs written for the Intel ;PSC/2 hypercube are used

to evaluate the proposed scheme. The periodic checkpointing routine is implemented as the

interrupt service routine for UNIX alarm(T) system call, where T is the checkpoint interval in

seconds. Each node processor sets the alarm at the very beginning of the node program and

the checkpointing routine independently. A concurrent checkpointing algorithm as described

by Li et. al [23] is assumed so that the program thread is interrupted for a small, fixed

amount of time (0.1 seconds) for taking each checkpoint, after which the checkpointing thread

executes concurrently with the program thread to finish the checkpointing. Communication

traces are collected by intercepting the "send" and "receive" system calls. Communication-

trace-driven simulation is then performed to obtain the results.

We refer to the above checkpointing scheme as "loosely synchronized" independent check-

pointing because checkpoints with the same checkpoint number on different processors are

taken at approximately the same time although they may not be consistent. By taking

advantage of this loose synchronization, we implement an algorithm to detect the non-state

messages with low overhead. Each processor maintains the following two boolean arrays of

size N:

14

1. Ever-Recv[N]: processor pi sets EverRecv[i] to 1 when it first receives a message

from the corresponding checkpoint interval of pi. Also, each message sent to Pk is

tagged with EverRecv[k].

2. NonState[N]: processor pi sets NonState[j] to 1 when it first receives a message

from the corresponding checkpoint interval of pi with EverRecv[i] equal to 1. If the

current checkpoint interval number is 1, this means pi detects an edge from CPj to

CPj(l+l). According to Theorem 1, pi does not have to log any message from the lth

checkpoint interval of pj because all of them are identified as non-state messages.

The four hypercube programs are QR decomposition, Simplex algorithm, Cell placement

and Channel router. They are executed on an 8-node cube and the execution times are listed

in Table 1. The checkpoint interval for each program is arbitrarily chosen to be approximately

one tenth of the execution time.

Table 1: Execution and checkpoint parameters of the hypercube programs.

Benchmark QR Siplex Cell Channel
programs decomposition algorithm placement Irouter

Execution
time (sec) 385.5 515.5 322.7 442.0
Checkpoint
interval (sec) 35 50 35 40
Average rollback
distance (CPI) 1.47 0.88 2.10 2.45

The last row of Table 1 shows the average rollback distance over five runs for each program

in terms of the number of checkpoint intervals (CPI). Here we only consider the global

recovery line. Average rollback distances in terms of the local recovery lines should be

smaller than the numbers shown. Since each run lasts for approximately ten checkpoint

15

intervals, the worst-case average rollback distance is (0 + 10)/2 = 5 checkpoint intervals

which occurs when the domino effect persists during the entire execution and the global

recovery line remains at the very beginning of the execution. The average rollback distance

for coordinated checkpointing scheme is approximately (0 + 1)/2 = 0.5 checkpoint intervals.

The actual number should be slightly higher because a certain amount of time has tV be

spent for receiving and logging the messages comprising the channel states before the most

recent recovery line is successfully established [17]. The following remarks are made based

on the fact that the average rollback distances shown in Table 1 range from 0.88 to 2.45

checkpoint intervals for the :our programs:

1. The domino effect does occur with an independent checkpointing scheme but the av-

erage rollback distances are acceptable at least for the four programs tested.

2. Applications with independent checkpointing can benefit from the techniques for re-

ducing rollback propagation (e.g., [24]) and for reducing the space overhead (e.g., the

PCSR algorithm).

Table 2 shows the average overhead for message logging. The number of logged messages

is only a very small portion (less than 0.5 percent) of the total number of messages. This is

also true when message size is considered. Since the checkpoint sizes range from hundreds of

kilobytes to several megabytes, even the largest message log per checkpoint which is several

kilobytes adds very little extra overhead to the checkpoint. The result shows that Theorem 1

and our algorithm for detecting non-state messages are effective in reducing the overhead

for message logging.

Fig. 9 compares our PCSR algorithm with the traditional checkpoint space reclamation

algorithm for a typical execution of the Channel router program. Since obsolete checkpoints

must be discardable, the curve for non-discardable checkpoints is always below the curve for

16

Table 2: Message logging overhead in terms of the number and the size of logged messages.

Benchmark QR Simplex Cell Channel
programs Tdecomposition algorithm placement router

Total number
of messages 153,551 60,355 254,708 362,513
Number of
logged messages 35 17 460 1,345
Percentage 0.02% 0.03% 0.17% 0.37%

Total size of
messages (M bytes) 491.7 44.4 13.8 6.7
Size of logged
messages (bytes) 112,085 8,432 17,476 23,002
Percentage 0.02% 0.02% 0.13% 0.34%

Average checkpoint
size (M bytes) 0.878 3.674 0.690 0.258
Average message
log size per CP (bytes) 1,304 105 250 268
Percentage 0.15% 0.003% 0.04% 0.10%

non-obsolete checkpoints. Note that the curves in Fig. 9 do not show the actual number of

checkpoints kept on stable storage during program execution because the checkpoint space

reclamation algorithm is not continuously active throughout the program execution. Instead,

it shows the number of checkpoints which have to be kept if the algorithm is invoked after a

certain number of checkpoints have been taken. The figure shows that the PCSR algorithm

is particularly effective when the domino effect persists, for example, between the 48th and

the 80th checkpoints.

7 CONCLUSIONS

Recording the channel state through message logging allows the checkpointing to be

17

performed at the application level without the access of low-level communication protocol.

Our optimistic logging scheme delays message logging until the time the next checkpoint is

taken. The number of messages which have to be logged can be greatly reduced by monitoring

the message exchange during the current checkpoint interval. By introducing the idea of

valid checkpoints, rollback propagation algorithm developed for schemes without message

logging can still apply by simply excluding invalid checkpoints from the graph. A new

checkpoint space reclamation algorithm is presented for identifying the set of all discardable

checkpoints, which includes the set of obsolete checkpoints as a subset. Communication-

trace-driven simulation for four hypercube programs using loosely synchronized independent

checkpoir ng scheme shows that our algorithms for reducing checkpointing and message

logging overhead are effective.

ACKNOWLEDGEMENT

The authors wish to express their sincere thanks to Pi-Yu Chung for her valuable discus-

sions, to Junsheng Long, Mike Peercy, Craig B. Stunkel and Balkrishna Ramkumar for their

help with collecting the communication traces, and to Prith Banerjee for use of his parallel

programs.

References

[1] Y. Tamir and C. H. Sequin, "Error recovery in multicomputers using global check-
points," in Proc. Int. Conf. on Parallel Processing, pp. 32-41, 1984.

[2] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states of
distributed systems," ACM Trans. on Computer Systems, vol. 3, pp. 63-75, Feb. 1985.

[3] R. Koo and S. Toueg, "Checkpointing and rollback-recovery for distributed systems,"
IEEE Trans. on Software Engineering, vol. SE-13; pp. 23-31, Jan. 1987.

[4] K. Li, J. F. Naughton, and J. S. Plank, "Checkpointing multicomputer applications,"
in Proc. IEEE Symp. on Reliable Distributed Systems, pp. 2-11, 1991.

18

[5] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for dis-
tributed processes," in Proc. IEEE 2nd Symp. on Reliability in Distributed Software
and Database, pp. 124-130, 1981.

[6] R. E. Strom and S. Yemini, "Optimistic recovery in distributed systems," ACM Trans.
on Computer Systems, vol. 3, pp. 204-226, Aug. 1985.

[7] B. Bhargava and S. R. Lian, "Independent checkpointing and concurrent rollback for re-
covery - An optimistic approach," in Proc. IEEE Symp. on Reliable Distributed Systems,
pp. 3-12, 1988.

[8] D. B. Johnson and W. Zwaenepoel, "Recovery in distributed systems using optimistic
message logging and checkpointing," J. of Algorithms, vol. 11, pp. 462-491, 1990.

[9] A. Borg, J. Baumbach, and S. Glazer, "A message system supporting fauit-tolerance,"
in Proc. 9th ACM Symp. on Operating Systems Principles, pp. 90-99, 1983.

[101 A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, "Fault tolerance under
UNIX," ACI Trans. on Computer Sysiems, vol. 7, pp. 1-24, Feb. 1989.

[11] M. L. Powell and D. L. Presotto, "Publishing: A reliable broadcast communication
mechanism," in Proc. 9th ACM Symp. on Operating Systems Principles, pp. 100-109,
1983.

[12] A. P. Sistla and J. L. Welch, "Efficient distributed recovery using message logging," in
Proc. 8th ACM Symposium on Principles of Distributed Computing, pp. 223-238, 1989.

[13] R. D. Schlichting and F. B. Schneider, "Fail-stop processors: An approach to designing
fault-tolerant computing systems," ACM Trans. on Computer Systems, vol. 1, pp. 222-
238, Aug. 1983.

[14] D. B. Johnson and W. Zwaenepoel, "Transparent optimistic rollback recovery," Oper-
ating Systems Review, pp. 99-102, Apr. 1991.

[15] S. F. Nugent, "The iPSC/2 direct-connect communications technology," in Proc. 3rd
ACM Hypercube Conf., pp. 384-390, 1988.

[16] P. Pierce, "The NX/2 operating system," in Proc. 3rd ACM Hypercube Conf., pp. 384-
390, 1988.

[17] F. Cristian and F. Jahanian, "A timestamp-based checkpointing protocol for long-
lived distributed computations," in Proc. IEEE Symp. on Reliable Distributed Systems.
pp. 12-20, 1991.

[18] B. Randell, "System structure for software fault tolerance," IEEE Trans. on Software
Engineering, vol. SE-1, pp. 220-232, June 1975.

19

[19] Y. M. Wang, P. Y. Chung, I. J. Lin, and W. K. Fuchs, "Reducing space overhead for
independent checkpointing," Tech. Rep. CRHC-92-06, Center for Reliable and High-
Performance Computing, University of Illinois at Urbana-Champaign, 1992.

[201 L. Lamport, "Time, clocks and the ordering of events in a distributed system," Comm.
of the ACM, vol. 21, pp. 558-565, July 1978.

[21] K. P. Bogart, Introductory combinatorics. Pitman Publishing Inc., Massachusetts, 1983.

[221 I. Anderson, Combinatorics of finite sets. Clarendon Press, Oxford, 1987.

[231 K. Li, J. F. Naughton, and J. S. Plank, "Real-time, concurrent checkpointing for parallel
programs," in Proc. 2nd ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, pp. 79-88, Mar. 1990.

[24] Y. M. Wang and W. K. Fuchs, "Scheduling message processing for reducing rollback
propagation." Submitted to Symp. on Fault Tolerant Computing, 1992.

20

PO P

P23P

(a) (b)

PO P

P3 P

(C) (d)

P2P2 X-0

P3 --- 3E

Figure 8: The execution of the PCSR algorithm (a) checkpoint graph G (b) supergraph
(c) -no (d) 0-n, (e) G-n 2 (f) G - n 3 - (Shaded checkpoints belong to the recovery
lines and checkpoints marked "X" are discardable.)

21

04
a) 48

a)"Non-obsolete" --
"Non-discardable" -i-

0 40

32

0.
-'-4

2~ 24

0 8

z 0

0 8 16 24 32 40 48 56 64 72 80

Number of checkpoints taken

Figure 9: Comparison of the number of non-obsolete checkpoints and non-discardable check-
points for the Channel router program.

22

